- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Song, Jihun (2)
-
Xu, Hongyi (2)
-
Zhu, Juner (2)
-
Fang, Ruqing (1)
-
Ghamsari, Amin Kazem (1)
-
Huang, Luyao (1)
-
Ihuaenyi, Royal C (1)
-
Lee, Yong Min (1)
-
Li, Wei (1)
-
Lim, Jaejin (1)
-
Wang, Ying (1)
-
Wang, Zihan (1)
-
Xu, Leidong (1)
-
Zhu, Hongli (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Increasing the thickness of the electrodes is considered the primary strategy to elevate battery energy density. However, as the thickness increases, rate performance, cycling performance, and mechanical stability are affected due to the sluggish ion transfer kinetics and compromised structural integrity. Inspired by the natural hierarchical porous structure of trees, electrodes with bioinspired architecture are fabricated to address these challenges. Specifically, electrodes with aligned columns consist of tree‐inspired vertical channels, and hierarchical pores are constructed by screen printing and ice‐templating, imparting enhanced electrochemical and mechanical performance. Employing an aqueous‐based binder, the LiNi0.8Mn0.1Co0.1O2cathode achieves a high areal energy density of 15.1 mWh cm−2at a rate of 1C at mass loading of 26.0 mg cm−2, benefitting from the multiscale pores that elevated charge transfer kinetics in the thick electrode. The electrodes demonstrate capacity retention of 90% at the 100th cycle at a high current density of 5.2 mA cm−2. To understand the mechanisms that promote electrode performance, simplified electro‐chemo‐mechanical models are developed, the drying process and the charge‐discharge process are simulated. The simulation results suggested that the improved performance of the designed electrode benefits from the lower ohmic overpotential and less strain gradient and stress concentration due to the hierarchical porous architecture.more » « less
-
Song, Jihun; Ihuaenyi, Royal C; Lim, Jaejin; Wang, Zihan; Li, Wei; Fang, Ruqing; Ghamsari, Amin Kazem; Xu, Hongyi; Lee, Yong Min; Zhu, Juner (, Energy & Environmental Science)We developed a model that considers all components of a composite electrode. It integrates particle- and electrode-level behavior and enables simulation of the mechanical behavior of polymeric binders, which is critical for battery degradation.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
